钎焊技术
钎焊(Soldering and Brazing)是指利用熔点比母材(被钎焊材料)熔点低的填充金属(称为钎料或焊料),将焊件和钎料加热到高于钎料熔点,低于母材熔化温度,利用液态钎料润湿母材,填充接头间隙并与母材相互扩散实现连接焊件的方法。[1]钎焊变形小,接头光滑美观,适合于焊接精密、复杂和由不同材料组成的构件,如蜂窝结构板、透平叶片、硬质合金刀具和印刷电路板等。钎焊主要应用于电热产品、五金配件,空调配件,机车配件,电气零部件等及异种金属类制造上。
1、基本简介
钎焊(SolderingandBrazing):利用熔点比母材(被钎焊材料)熔点低的填充金属(称为钎料或焊料),在低于母材熔点、高于钎料熔点的温度下,利用液态钎料在母材表面润湿、铺展和在母材间隙中填缝,与母材相互溶解与扩散,而实现零件间的连接的焊接方法。较之熔焊,钎焊时母材不熔化,仅钎料熔化;
较之压焊,钎焊时不对焊件施加压力。
钎焊形成的焊缝称为钎缝。
钎焊所用的填充金属称为钎料(焊膏)。
钎焊过程:表面清洗好的工件以搭接型式装配在一起,把钎料放在接头间隙附近或接头间隙之间。当工件与钎料被加热到稍高于钎料熔点温度后,钎料熔化(工件未熔化),并借助毛细管作用被吸入和充满固态工件间隙之间,液态钎料与工件金属相互扩散溶解,冷疑后即形成钎焊接头。[2]
2、应用特点
⑴钎焊加热温度较低,接头光滑平整,组织和机械性能变化小,变形小,工件尺寸精确。
⑵可焊异种金属,也可焊异种材料,且对工件厚度差无严格限制。
⑶有些钎焊方法可同时焊多焊件、多接头,生产率很高。
⑷钎焊设备简单,生产投资费用少。
应用
钎焊不适于一般钢结构和重载、动载机件的焊接。主要用于制造精密仪表、电气零部件、异种金属构件以及复杂薄板结构,如夹层构件、蜂窝结构等,也常用于钎焊各类异线与硬质合金刀具。钎焊时,对被钎接工件接触表面经清洗后,以搭接形式进行装配,把钎料放在接合间隙附近或直接放入接合间隙中。当工件与钎料一起加热到稍高于钎料的熔化温度后,钎料将熔化并浸润焊件表面。液态钎料借助毛细管作用,将沿接缝流动铺展。于是被钎接金属和钎料间进行相互溶解,相互渗透,形成合金层,冷凝后即形成钎接接头。
钎焊在机械、电机、仪表、无线电等部门都得到了广泛的应用。硬质合金刀具、钻探钻头、自行车车架、换热器、导管及各类容器等;在微波波导、电子管和电子真空器件的制造中,钎焊甚至是唯一可能的连接方法。[3]
特点
一是接头表面光洁,气密性好,形状和尺寸稳定,焊件的组织和性能变化不大,可连接相同的或不相同的金属及部分非金属。钎焊时,还可采用对工件整体加热,一次焊完很多条焊缝,提高了生产率。但钎焊接头的强度较低,多采用搭接接头,靠通过增加搭接长度来提高接头强度;另外,钎焊前的准备工作要求较高。
二是钎料熔化而焊件不熔化。为了使钎接部分连接牢固,增强钎料的附着作用,钎焊时要用钎剂,以便清除钎料和焊件表面的氧化物。硬钎料(如铜基、银基、铝基、镍基等),具有较高的强度,可以连接承受载荷的零件,应用比较广泛,如硬质合金刀具、自行车车架。较钎料(如锡、铅、铋等),焊接强度低,主要用于焊接不承受载荷但要求密封性好的焊件,如容器、仪表元件等。
钎焊采用熔点低于母材的合金作钎料,加热时钎料熔化,并靠润湿作用和毛细作用填满并保持在接头间隙内,而母材处于固态,依靠液态钎料和固态母材间的相互扩散形成钎焊接头。钎焊对母材的物理化学性能影响小,焊接应力和变形较小,可焊接性能差别较大的异种金属,能同时完成多条焊缝,接头外表美观整齐,设备简单,生产投资小。但钎焊接头的强度较低,耐热能力差。
3、发展历程
钎焊是人类最早使用的材料连接方法之一,在人类尚未开始使用铁器时,就已经发明用钎焊来链接金属。在埃及出土的古文物中,就有用银铜钎料钎焊的管子,用金钎料连接的护符盒,据考证分别是5000年前和近4000年前的物品。公元79年被火山爆发埋没的庞贝城的废墟中,残存着由钎焊连接的家用钎制水管的遗迹,使用的钎料具有Sn:Pb=1:2的成分比,类似现代使用的钎料成分。中国在公元前5世纪的战国初期也已经使用锡铅合金钎料,在秦始皇兵马俑青铜器马车中也大量采用了钎焊技术。中国最早见著于文献记载德钎焊时汉代班固所选《汉书》中有云:“胡桐泪盲似眼泪也可以韩金银也今工匠皆用之”。1637年出版的明代宋应星科技巨著《天工开物》中有“中华小钎用白铜沫,大钎则竭力挥锤而强合之,若以胡桐汁合银,坚如石。今玉石刀柄之类焊药,加银一分其中,则永不脱。试以圆盆口点焊药于其一隅,其药自走,周而环之,亦一奇也”。这一记述明确指出了铜钎焊应以硼砂做钎剂而银钎焊则可以胡桐树脂为钎剂,并且对钎料的填缝行为做了精彩的描述。尽管钎焊技术出现较早,但很长时间没有得到大的发展。进入20世纪后,其发展也远落后于熔焊技术。直到20世界30年代,在冶金和化工技术发展的基础上,钎焊技术才有了较快发展,并逐渐成为一种独立的工业生产记述尤其是二次世界大战后,由于航空、航天、核能、电子等新技术的发展,新材料、新结构形式的采用,对连接技术提出了更高的要求,钎焊技术因此受到了更大的重视,迅速的发展起来,出现了许多新的钎焊方法,其应用也越来越广泛。例如,制造机械加工用的各种刀具特别是硬质合金刀具,钻探、采掘用的钻具,各种导管和容器,汽车拖拉机的水箱,各种用途的不同材料不同结构形式的换热器,电机部件以及汽轮机的叶片和拉筋等构件的制造广泛采用钎焊技术。在轻工业生产中,从医疗器械、金属植入假体、乐器到家用电器、炊具、自行车,都大量采用钎焊技术。对于电子工业和仪表制造业,在很大范围内钎焊时唯一可行的链接方法,如在元器件生产中大量涉及金属与陶瓷、玻璃等非金属的连接问题,及在布线连接中必须防止加热对元器件的损害,这些都有赖于钎焊技术。在核电站和船舶核动力装置中,燃料元件定位架,换热器、中子探测器等重要部件也常采用钎焊结构。
4、相关材料
润湿与铺展
钎焊时,只有熔化的液体钎料很好地润湿母材表面才能填满钎缝。衡量钎料对母材润湿能力的大小,可用钎料(液相)与母材(固相)相接触时的接触夹角大小来表示。影响钎料润湿母材的主要因素有:
⒈钎料和母材的成份
若钎料与母材在固态和液态下均不发生物理化学作用,则他们之间的润湿作用就很差,如铅与铁。若钎料与母材能相互溶解或形成化合物,则认为钎料能较好地润湿母材,例如银对铜。
⒉钎焊温度
钎焊加热温度的升高,由于钎料表面张力下降等原因会改善钎料对母材的润湿性,但钎焊温度不能过高,否则会造成钎料流失,晶粒长大等缺陷。
⒊母材表面氧化物
如果母材金属表面存在氧化物,液态钎料往往会凝聚成球状,不与母材发生润湿,所以,钎焊前必须充分清除氧化物,才能保证良好的润湿作用。
⒋母材表面粗糙度
当钎料与母材之间作用较弱时,母材表面粗糙的沟槽起到了特殊的毛细作用,可以改善钎料在母材上的润湿与铺展。
⒌钎剂
钎焊时使用钎剂可以清除钎料和母材表面的氧化物,改善润湿作用。
毛细流动
钎焊时,液体钎料要沿着间隙去填满钎缝,由于间隙很小,如同毛细管,所以称之为毛细流动。毛细流动能力的大小,能决定钎料能否填满钎缝间隙。
影响液体钎料毛细流动的因素很多,主要有钎料的润湿能力和接头间隙大小等,如钎料对母材润湿性好,接头有较小的间隙,都可以得到良好的钎料流动与填充性能。
相互作用
液态钎料在毛细填隙过程中与母材发生相互物理化学作用,这些相互作用对钎焊接头的性能影响很大,它们可以分为两种:
⒈母材向钎料的溶解
钎焊时一般都发生母材向液体钎料的溶解过程,可使钎料成份合金化,有利于提高接头强度。但母材的过度溶解会使液体钎料的熔点和粘度升高,流动性变差,往往导致不能填满钎缝间隙,同时可能使母材表面因过分溶解而出现凹陷等缺陷。
⒉钎料组份向母材扩散
钎焊时,也出现钎料组份向母材的扩散,扩散以两种方式进行:一种是钎料组元向整个母材晶粒内部扩散,在母材毗邻钎缝处的一边形成固溶体层,对接头不会产生不良影响。另一种是钎料组元扩散到母材的晶粒边界,常常使晶界发脆,尤其是在薄件钎焊时比较明显。
为了使钎接部分连接牢固,增强钎料的附着作用,钎焊时要用钎剂。它的作用是清除钎料和母材表面的氧化物,保护焊件和液态钎料在钎焊过程中免于氧化,改善液态钎料对焊件的润湿性。
常用钎料
一般有两类。一类是硬钎料,熔点在450℃以上,常用的钎料有铜基、银基、铝基、镍基等合金。钎剂常用硼砂、硼酸、氯化物、氟化物等。硬钎焊的加热源有焊炬火焰、电阻电热、感应加热、盐浴加热及炉内加热等。钎接接头强度较高,适于钎焊受力较大或工作温度较高的工件,如硬质合金刀具、自行车车架等,通常把这类钎焊称为硬钎焊;另一类是软钎料,熔点在450℃以下,应用最广泛的软钎料是锡基合金,多数软钎料适合的焊接温度为200-400℃,钎剂为松香、松香酒精溶液、氯化锌溶液,加热方法常用烙铁加热。钎接接头强度较低,适于钎接受力不大或工作温度较低的工件,如容器、仪表元件等,通常把这类钎焊称为软钎焊。
钎料是形成钎焊接头的填充金属,钎焊接头的质量在很大程度上取决钎料。钎料应该具有合适的熔点、良好的润湿性和填缝能力,能与母材相互扩散,还应具有一定的力学性能和物理化学性能,以满足接头的使用性能要求。
5、关联概念
钎焊接头
钎焊一般采用板料搭接和套管嵌接的形式。这样可以通过增加焊件之间的结合面,来弥补钎料强度的不足,保证接头的承载能力。这种接头形式还便于控制接头的间隙,适当的间隙可以使钎料在接头中均匀分布,达到最佳的钎焊效果。钎焊接头的间隙范围一般是0.05~0.2mm。
钎焊接头的承载能力与接头连接面大小有关。因此,钎焊一般采用搭接接头和套件镶接,以弥补钎焊强度的不足。
6、熔点分类
钎焊是利用熔点比母材低的金属作为钎料,加热后,钎料熔化,焊件不熔化,利用液态钎料润湿母材,填充接头间隙并与母材相互扩散,将焊件牢固的连接在一起。
根据钎料熔点的不同,将钎焊分为软钎焊和硬钎焊。
软钎焊
⑴软钎焊:软钎焊的钎料熔点低于450°C,接头强度较低(小于70MPa)。
软钎焊多用于电子和食品工业中导电、气密和水密器件的焊接。以锡铅合金作为钎料的锡焊最为常用。软钎料一般需要用钎剂,以清除氧化膜,改善钎料的润湿性能。钎剂种类很多,电子工业中多用松香酒精溶液软钎焊。这种钎剂焊后的残渣对工件无腐蚀作用,称为无腐蚀性钎剂。焊接铜、铁等材料时用的钎剂,由氯化锌、氯化铵和凡士林等组成。焊铝时需要用氟化物和氟硼酸盐作为钎剂,还有用盐酸加氯化锌等作为钎剂的。这些钎剂焊后的残渣有腐蚀作用,称为腐蚀性钎剂,焊后必须清洗干净。
硬钎焊
⑵硬钎焊:硬钎焊的钎料熔点高于450°C,接头强度较高(大于200MPa)。
硬钎焊接头强度高,有的可在高温下工作。硬钎焊的钎料种类繁多,以铝、银、铜、锰和镍为基的钎料应用最广。铝基钎料常用于铝制品钎焊。银基、铜基钎料常用于铜、铁零件的钎焊。锰基和镍基钎料多用来焊接在高温下工作的不锈钢、耐热钢和高温合金等零件。焊接铍、钛、锆等难熔金属、石墨和陶瓷等材料则常用钯基、锆基和钛基等钎料。选用钎料时要考虑母材的特点和对接头性能的要求。硬钎焊钎剂通常由碱金属和重金属的氯化物和氟化物,或硼砂、硼酸、氟硼酸盐等组成,可制成粉状、糊状和液状。在有些钎料中还加入锂、硼和磷,以增强其去除氧化膜和润湿的能力。焊后钎剂残渣用温水、柠檬酸或草酸清洗干净。
注意:母材的接触面应很干净,因此要用钎剂。钎剂的作用是去除母材和钎料表面的氧化物和油污杂质,保护钎料和母材接触面不被氧化,增加钎料的润湿性和毛细流动性。钎剂的熔点应低于钎料,钎剂残渣对母材和接头的腐蚀性应较小。软钎焊常用的钎剂是松香或氯化锌溶液,硬钎焊常用的钎剂是硼砂、硼酸和碱性氟化物的混合物。
7、工艺方法
钎焊过程的主要工艺参数是钎焊温度和保温时间。钎焊温度通常选为高于钎料液相线温度25 ^- 60 'C,以保证钎料能填满间隙。
钎焊保温时间视工件大小及钎料与母材相互作用的剧烈程度而定。大件的保温时间应长些,以保证加热均匀。钎料与母材作用强烈的,保温时间要短。一般说来,一定的保温时间是促使钎料与母材相互扩散,形成牢固结合所必需的。但过长的保温时间将导致熔蚀等缺陷的发生。钎焊常用的工艺方法较多,主要是按使用的设备和工作原理区分的。如按热源区分则有红外、电子束、激光、等离子、辉光放电钎焊等;按工作过程分有接触反应钎焊和扩散钎焊等。接触反应钎焊是利用钎料与母材反应生成液相填充接头间隙。扩散钎焊是增加保温扩散时间,使焊缝与母材充分均匀化,从而获得与母材性能相同的接头。几乎所有的加热热源都可以用作钎焊热源,并依此将钎焊分类:
烙铁钎焊 用于细小简单或很薄零件的软钎焊。
波峰钎焊 用于大批量印刷电路板和电子元件的组装焊接。施焊时,250℃左右的熔融焊锡在泵的压力下通过窄缝形成波峰,工件经过波峰实现焊接。这种方法生产率高,可在流水线上实现自动化生产。
火焰钎焊 用可燃气体与氧气或压缩空气混合燃烧的火焰作为热源进行焊接。火焰钎焊设备简单、操作方便,根据工件形状可用多火焰同时加热焊接。这种方法适用于自行车架、铝水壶嘴等中、小件的焊接。
浸沾钎焊 将工件部分或整体浸入覆盖有钎剂的钎料浴槽或只有熔盐的盐浴槽中加热焊接。这种方法加热均匀、迅速、温度控制较为准确,适合于大批量生产和大型构件的焊接。盐浴槽中的盐多由钎剂组成。焊后工件上常残存大量的钎剂,清洗工作量大。
感应钎焊利用高频、中频或工频感应电流作为热源的焊接方法。高频加热适合于焊接薄壁管件。采用同轴电缆和分合式感应圈可在远离电源的现场进行钎焊,特别适用于某些大型构件,如火箭上需要拆卸的管道接头的焊接。
炉中钎焊 将装配好钎料的工件放在炉中进行加热焊接,常需要加钎剂,也可用还原性气体或惰性气体保护,加热比较均匀。炉中钎焊又可分为箱式钎焊炉,井式钎焊炉,间歇式钎焊炉,连续式钎焊炉。大批量生产时可采用连续式炉。
真空钎焊工件加热在真空室内进行,主要用于要求质量高的产品和易氧化材料的焊接。
8、质量检验
钎焊接头的缺陷钎接及其成因如下:
1.填隙不良,部分间隙未被填满
产生原因:
⑴接头设计不合理,装配间隙过大或过小,装配时零件歪季斜。
⑵钎剂不合适,如活性差,钎剂与钎料熔化温度相差过大,钎剂填隙能力差等;或者是气体保护钎焊时气体纯度低,真空钎焊时真空度低。
⑶钎料选用不当,如钎料的润湿作用差,钎料量不足。
⑷钎料安置不当。
⑸钎焊前准备工作不佳,如清洗不净等。套
⑹钎焊温度过低或分布不均匀。
2.钎缝气孔
产生原因:
⑴接头间隙选择不当。
⑵钎焊前零件清理不净。
⑶钎剂去膜作用或保护气体去氧化物作用弱。
⑷钎料在钎焊时析出气体或钎料过热。
3.钎缝夹渣
产生原因:
⑴钎剂使用量过多或过少。
⑵接头间隙选择不当。
⑶钎料从接头两面填缝。
⑷钎料与钎剂的熔化温度不匹配。
⑸钎剂比重过大。
⑹加热不均匀。
4.钎缝开裂
产生原因:
⑴由于异种母材的热膨胀系数不同,冷却过程中形成的内应力过大。
⑵同种材料钎焊加热不均匀,造成冷却过程中收缩不一致。
⑶钎料凝固时,零件相互错动。
⑷钎料结晶温度间隔过大。
⑸钎缝脆性过大。
5.钎料流失
产生原因:
⑴钎焊温度过高或保温时间过长。
⑵钎料安置不当以致未起毛细作用。
⑶局部间隙过大。
6.母材被溶蚀
产生原因:
⑴钎焊温度过高,保温时间过长。
⑵母材与钎料之间的作用太剧烈。
⑶钎料量过大。
9、检验方法
钎焊接头缺陷的检验方法可分为无损检验和破坏性检验。
⒈外观检查
外观检查是用肉眼或低倍放大镜检查钎焊接头的表面质量,如钎料是否填满间隙,钎缝外露的一端是否形成圆角,圆角是否均匀,表面是否光滑,是否有裂纹、气孔及其它外部缺陷。
2.表面缺陷检验
表面缺陷检验法包括荧光检验(着色检验)和磁粉检验。它们用于检查外观及检查目视发现不了的钎缝表面缺陷,如裂纹、气孔等。荧光检验一般用于小型工件的检查,大工件则用着色检验(工件的局部检查),磁粉检验只用于带有磁性的金属。
⒊内部缺陷检验
主要采用射线检验、超声波检验和致密性检验。
射线检验(按源的种类分为X射线和y射线)是检验重要工件内部缺陷的常用方法,它可显示钎缝中的气孔、夹渣、未钎透以及钎缝和母材的开裂。超声波检验所能发现的缺陷范围与射线检验相同。而钎焊结构的致密性检验常用方法有一般的水压试验、气密试验、气渗透试验、煤油渗漏试验和质谱试验等方法。其中水压试验用于高压容器,气密试验及气渗透试验用于低压容器,煤油渗透试验用于不受压容器;质谱试验用于真空密封接头。